placeholder
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Language: English
    In: Science (American Association for the Advancement of Science), 2012-06-29, Vol.336 (6089), p.1704-1708
    Description: Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F₂ mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.
    Subject(s): Alkaloids ; Anticancer properties ; Antineoplastic Agents, Phytogenic - biosynthesis ; Biological and medical sciences ; Biosynthesis ; Capsules ; Classical genetics, quantitative genetics, hybrids ; Clusters ; Cough ; Enzymes ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Gene silencing ; Genes ; Genes, Plant ; Genetic aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Genomes ; Latex ; Libraries ; Low level ; Molecular Sequence Data ; Morphinans ; Multigene Family ; Narcotics ; Noscapine - metabolism ; Open reading frames ; Papaver - enzymology ; Papaver - genetics ; Papaver - metabolism ; Papaver somniferum ; Pharmaceutical sciences ; Physiological aspects ; Plant biology ; Poppies ; Pteridophyta, spermatophyta ; REPORTS ; Research ; Synthesis ; Vegetals
    ISSN: 0036-8075
    E-ISSN: 1095-9203
    Source: JSTOR Life Sciences
    Source: Academic Search Ultimate
    Source: Alma/SFX Local Collection
    Source: Get It Now
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Cell reports (Cambridge), 2015-05-19, Vol.11 (7), p.1134-1146
    Description: Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer’s disease (AD), Huntingtin (HTT) for Huntington’s disease, Parkin (PARK2) for Parkinson’s disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. [Display omitted] •Quantitative interactomics of proteins involved in four neurodegenerative diseases•Differential interaction mapping of wild-type and disease-associated proteins•Interaction partners are significantly linked to disease phenotypes in vivo•Interaction of APP and LRPPRC appears to induce mitochondrial dysfunction in AD Hosp et al. show that quantitative interaction proteomics of neurodegenerative disease proteins captures interactions relevant to pathogenesis. Differential interactome mapping reveals preferential binding of the mitochondrial protein LRPPRC with an early-onset Alzheimer’s disease (AD) variant of APP, potentially contributing to mitochondrial dysfunction observed in AD.
    Subject(s): Animals ; Chromatography, Liquid ; Genome-Wide Association Study ; Humans ; Immunoprecipitation ; Medical and Health Sciences ; Medical Biotechnology ; Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) ; Medicin och hälsovetenskap ; Medicinsk bioteknologi ; Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) ; Neurodegenerative Diseases - metabolism ; Phenotype ; Proteomics - methods ; Tandem Mass Spectrometry
    ISSN: 2211-1247
    E-ISSN: 2211-1247
    Source: Alma/SFX Local Collection
    Source: SWEPUB Freely available online
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...