placeholder
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
Filter
Document type
Language
Year
  • 1
    Language: English
    In: Trees (Berlin, West), 2008-12, Vol.22 (6), p.749-758
    Description: Long-term variation in tree-ring widths (1873–2006) and intra-annual dynamics of cambial activity and tree-ring formation in 2006 were studied in mature beech (Fagus sylvatica L.) trees at a typical forest site near Ljubljana (46°N, 14°40′E, 400 m a.s.l.) and related to leaf phenology and climate data. Tree-ring widths were negatively affected by minimum March and maximum August temperatures and favoured by May and July precipitation. Precipitation of the previous August and temperature of the previous November also had a positive effect. Leaf unfolding was affected by March and April temperatures, occurring later if they were low. Leaf yellowing was positively affected by minimum July temperatures and negatively by September precipitation. In 2006, leaf unfolding occurred on 16 April and was immediately followed by reactivation of cambium at breast height of the trees. One week later, the cambium obtained its maximum width (around 11 cell layers) and the rate of division increased until the end of May/beginning of June. By the end of June, 75% of the tree-ring was formed. Cambial cell divisions stopped from the end of July to mid-August. The average time of cambial activity was 100 days. Leaf yellowing occurred at the end of October, i.e. nearly 2 months after the cessation of cambial cell division. We discuss the usefulness of a combination of long-term (tree-ring width and phenology) and short-term (wood formation at a cellular level) data to understand better the environmental signals registered by a tree during growth.
    Subject(s): Life Sciences ; Plant Pathology ; Plant Anatomy/Development ; European beech = Fagus sylvatica ; Climate ; Tree-rings ; Phenology ; Forestry ; Plant Physiology ; Agriculture ; Wood formation ; Plant Sciences ; Rain and rainfall ; Universities and colleges
    ISSN: 0931-1890
    E-ISSN: 1432-2285
    Source: Alma/SFX Local Collection
    Source: ProQuest Central
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Climatic change, 2019-03-01, Vol.153 (1), p.181-197
    Description: Climate scenarios for Slovenia suggest an increase in the mean annual temperature by 2 °C over the next six decades, associated with changes in the seasonal distribution of precipitation. European beech is an ecologically and economically important forest species in Europe, so it is important to understand the influence of changing conditions on its phenology and productivity for the upcoming years. We hypothesise that the ongoing warming and reduction in precipitation during the growing season will shorten the period of xylem development, thus limiting beech growth in the next decades. Xylem formation was monitored weekly from 2008 to 2016 at two sites in Slovenia. Onset and cessation of cell enlargement and secondary wall formation, as well as xylem growth, are used to evaluate climate-growth relationships by means of partial least squares regression and to predict xylem formation phenology and annual xylem increments under climate change scenarios. A positive correlation of spring phenological phases with March–May temperatures is found. In contrast, autumn phenological phases show a negative correlation with August and September temperatures, while high temperatures at the beginning of the year delay growth cessation. According to the selected climate change scenarios, phenological phases may advance by 2 days decade-1 in spring and delay by 1.5 days decade-1 in autumn. The duration of the growing season may increase by 20 days over the next six decades, resulting in 38 to 83% wider xylem increments. The growth of beech is expected to increase under a warming climate in the sites characterised by abundant water availability.
    Subject(s): Earth Sciences ; Climate Change/Climate Change Impacts ; Atmospheric Sciences ; Botanical research ; Xylem ; Vegetation and climate ; Beech ; Physiological aspects ; Global warming ; Research ; Observations
    ISSN: 0165-0009
    E-ISSN: 1573-1480
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Global change biology, 2016-11, Vol.22 (11), p.3804-3813
    Description: The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998–2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall‐thickening and mature tracheids appeared earlier, and last enlarging and wall‐thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at −2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C−1. April–May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.
    Subject(s): cell production ; cell differentiation ; secondary wall formation ; cambium ; conifers ; meristem ; growth ; climate change ; Trees ; Cold Temperature ; Plant Development ; Xylem ; Ecosystem ; Coniferophyta ; Seasons ; Biomes ; Environmental aspects ; Global temperature changes ; Cell differentiation ; Ecosystems ; Analysis ; Index Medicus ; Life Sciences ; Vegetal Biology
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Source: Alma/SFX Local Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant, cell and environment, 2020-10, Vol.43 (10), p.2365-2379
    Description: The effects of short‐term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra‐annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015–2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event. Late frost affected C stem dynamics of Mediterranean beech trees more than summer drought. Even though frost had a devastating impact on the growth and consequently on stem C efflux, trees fully recovered in the following growing season, indicating high resilience to this stressful event.
    Subject(s): climate ghange ; Fagus sylvatica L. (beech) ; growth ; wood formation ; resilience ; phenology ; Carbon - metabolism ; Forests ; Carbon Dioxide - metabolism ; Plant Stems - metabolism ; Xylem - metabolism ; Droughts ; Mediterranean Region ; Wood - metabolism ; Fagus - metabolism ; Freezing ; Index Medicus
    ISSN: 0140-7791
    E-ISSN: 1365-3040
    Source: Alma/SFX Local Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Trees (Berlin, West), 2015-06, Vol.29 (3), p.747-757
    Description: The collapse of some cell types and the simultaneous growth or expansion of others hinder the estimation of the contribution of individual tissues to the variation of bark dimension over time. Information on the spatio-temporal pattern of secondary changes occurring in older bark, as well as the activity of phellogen and the development of periderm is still relatively scarce. Anatomical and histometrical investigations were carried out on the bark of mature Quercus petraea growing in Ljubljana, Slovenia. The bark of the oaks was on average 19 mm thick, with the inner bark and the rhytidome accounting for 39 and 61 %, respectively. A high correlation was found between the widths of the rhytidome and of the entire bark, but a fairly weak one between inner bark and entire bark. The youngest phloem increment on average represented around 5 % of the inner bark and around 2.1 % of the entire bark. Growth-ring boundaries were not distinguishable in the collapsed phloem; however, counting the phloem increments was possible due to the presence of phloem fibres at the transition from early to late phloem. We also followed the spatial–temporal secondary changes in collapsed phloem tissue. Phloem increment development in Q. petraea showed that patterns of phloem formation at one location remained practically unchanged in different years. The relationship between processes occurring in different bark tissues is not linear. In addition to the high variability in bark, the collapse of some cell types and the simultaneous growth or expansion of others hinder the estimation of the contribution of individual tissues to the variation of bark dimension over time.
    Subject(s): Plant Anatomy/Development ; Secondary phloem ; Plant Physiology ; Inner bark ; Phellogen ; Life Sciences ; Plant Pathology ; Sessile oak ; Forestry ; Light microscopy ; Agriculture ; Periderm ; Cambium ; Rhytidome ; Plant Sciences
    ISSN: 0931-1890
    E-ISSN: 1432-2285
    Source: Alma/SFX Local Collection
    Source: ProQuest Central
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Forests, 2020-10-01, Vol.11 (10), p.1
    Description: It is unclear how the anticipated climate change will affect the timing of phenology of different tree organs/tissues and thus the whole-tree functioning. We examined the timing of leaf phenology and secondary growth in three coexisting deciduous tree species (Quercus pubescens Willd., Fraxinus ornus L. and Ostrya carpinifolia Scop) from a sub-Mediterranean region in 2019. In addition, we investigated the relationship between leaf and cambial phenology and the onset of the potential functioning of initial conduits, as determined by the completed differentiation process (vessels) or final size (sieve tubes). For this purpose, leaf development was monitored and the microcores of cambium and the youngest phloem and xylem increments were repeatedly collected at 7-10-day intervals during the growing season. The results revealed differences in the timing of leaf development and seasonal radial growth patterns in spring among the studied tree species, depending on wood porosity. We found that cambial cell production started in all cases in the first half of March. However, in ring-porous Q. pubescens and F. ornus, radial growth in the stem occurred more than a month before buds were swollen, whereas in diffuse-porous O. carpinifolia, these two events were detected at almost the same time. The end of cambial cell production occurred earliest in F. ornus (mid-July) and two weeks later also in the other two species. The widest initial earlywood vessels and early phloem sieve tubes were found in Q. pubescens, the narrowest initial earlywood vessels in O. carpinifolia and the narrowest early phloem sieve tubes in F. ornus. This indicates differences in the efficiency of conducting systems among the studied species. This novel approach of studying phloem phenology and anatomy in relation to leaf and xylem development contributes to a better understanding of how different tree species adapt their structure of secondary vascular tissues in response to environmental change.
    Subject(s): Physiological aspects ; Environmental aspects ; Leaves ; Xylem ; Phloem ; Deciduous trees ; early phloem ; Ostrya carpinifolia ; Fraxinus ornus ; earlywood ; Quercus pubescens ; vessel
    ISSN: 1999-4907
    E-ISSN: 1999-4907
    Source: Directory of Open Access Journals
    Source: ProQuest Central
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Global change biology, 2019-03, Vol.25 (3), p.1089-1105
    Description: The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat‐sum models and chilling‐influenced heat‐sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site‐years over Europe and Canada. The chilling‐influenced heat‐sum model received most support for all the four studied species, predicting validation data with a 7.7‐day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling‐influenced heat‐sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter–spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling. A temperature sum model influenced by chilling accumulation predicts the spring onset of xylem enlargement across temperate and boreal latitudes, in four major Northern Hemisphere conifers. This model outperformed heat‐sums and threshold models. On the figure, plots per species show predicted (coloured lines) and observed (grey dots) xylem onset dates, sorted by temperatures during the January–June period. The central plot shows the species‐specific relation between chilling and forcing accumulation.
    Subject(s): chilling temperatures ; forcing temperatures ; cambium ; conifers ; phenological models ; wood phenology ; Weather forecasting ; Analysis ; Biodiversity and Ecology ; Environmental Sciences ; Global Changes
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Annals of botany, 2013-12-01, Vol.112 (9), p.1911-1920
    Description: • Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routiriely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. • Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. • Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern • Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
    Subject(s): Climate change ; Cell growth ; Xylem ; Tracheids ; Phenology ; Cell walls ; Conifers ; Cambium ; Cellular differentiation ; Species ; Cambium - growth & development ; Canada ; Xylem - cytology ; Climate Change ; Coniferophyta - growth & development ; Europe ; Xylem - growth & development ; Cell Differentiation ; Index Medicus ; Life Sciences ; xylogenesis ; cell production ; cell differentiation ; secondary wall formation ; conifers ; meristem ; productivity ; phenology ; growth ; Original ; climate change
    ISSN: 0305-7364
    E-ISSN: 1095-8290
    Source: Academic Search Ultimate
    Source: PubMed Central
    Source: Alma/SFX Local Collection
    Source: Oxford Journals 2016 Current and Archive A-Z Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: International journal of biometeorology, 2021-02, Vol.65 (2), p.311
    Description: Norway spruce (Picea abies L.) is among the most sensitive coniferous species to ongoing climate change. However, previous studies on its growth response to increasing temperatures have yielded contrasting results (from stimulation to suppression), suggesting highly site-specific responses. Here, we present the first study that applies two independent approaches, i.e. the nonlinear, process-based Vaganov-Shashkin (VS) model and linear daily response functions. Data were collected at twelve sites in Slovenia differing in climate regimes and ranging elevation between 170 and 1300 m a.s.l. VS model results revealed that drier Norway spruce sites at lower elevations are mostly moisture limited, while moist high-elevation sites are generally more temperature limited. Daily response functions match well the pattern of growth-limiting factors from the VS model and further explain the effect of climate on radial growth: prevailing growth-limiting factors correspond to the climate variable with higher correlations. Radial growth correlates negatively with rising summer temperature and positively with higher spring precipitation. The opposite response was observed for the wettest site at the highest elevation, which positively reacts to increased summer temperature and will most likely benefit from a warming climate. For all other sites, the future radial growth of Norway spruce largely depends on the balance between spring precipitation and summer temperature.
    Subject(s): Trees ; Abies ; Climate Change ; Norway ; Pinus ; Slovenia ; Picea ; Dendroclimatology ; Forests and forestry ; Global temperature changes ; Precipitation (Meteorology) ; Dendrochronology ; Analysis
    ISSN: 0020-7128
    E-ISSN: 1432-1254
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Forests, 2021-03-11, Vol.12 (3), p.331
    Description: Climate change will affect radial growth patterns of trees, which will result in different forest productivity, wood properties, and timber quality. While many studies have been published on xylem phenology and anatomy lately, little is known about the phenology of earlywood and latewood formation, also in relation to cambial phenology. Even less information is available for phloem. Here, we examined year-to-year variability of the transition dates from earlywood to latewood and from early phloem to late phloem in Norway spruce (Picea abies) from three temperate sites, two in Slovenia and one in the Czech Republic. Data on xylem and phloem formation were collected during 2009–2011. Sensitivity analysis was performed to determine the specific contribution of growth rate and duration on wood and phloem production, separately for early and late formed parts. We found significant differences in the transition date from earlywood to latewood between the selected sites, but not between growth seasons in trees from the same site. It occurred in the first week of July at PAN and MEN and more than two weeks later at RAJ. The duration of earlywood formation was longer than that of latewood formation; from 31.4 days at PAN to 61.3 days at RAJ. In phloem, we found differences in transition date from early phloem to late phloem also between the analysed growth seasons; from 2.5 weeks at PAN to 4 weeks at RAJ Compared to the transition from earlywood to latewood the transition from early phloem to late phloem occurred 25–64 days earlier. There was no significant relationship between the onset of cambial cell production and the transition dates. The findings are important to better understand the inter-annual variability of these phenological events in spruce from three contrasting temperate sites, and how it is reflected in xylem and phloem anatomy.
    Subject(s): phloem formation ; tracheid ; cambium ; sieve cell ; Picea abies ; xylem formation
    ISSN: 1999-4907
    E-ISSN: 1999-4907
    Source: Directory of Open Access Journals
    Source: ProQuest Central
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...