placeholder
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Year
  • 1
    Language: English
    In: Animal behaviour, 2011, Vol.82 (6), p.1337-1345
    Description: Animals living in groups will profit most from sociality if they coordinate the timing and nature of their activities. Self-organizing mechanisms can underlie coordination in large animal groups such as insect colonies or fish schools, but to what degree these mechanisms operate in socially complex species that live in small stable groups is not well known. We therefore examined the collective departure of wild chacma baboons, Papio ursinus, from their sleeping sites. First, in line with previous observations, the departure process appeared to be coordinated through the cue of individuals ‘moving off’, with no role for specific vocal or visual signalling. Second, we employed network analyses to explore how interindividual relationships influenced departure patterns, and found that a local rule, to follow the movements of those baboons with whom they shared a close social affiliation, determined when the baboon group departed. Finally, using an agent-based model, we were able to simulate mathematically the observed patterns of collective movements based upon the emergent rule that we identified. Our study adds weight to the idea that social complexity does not necessitate cognitive complexity in the decision-making process, consistent with heuristic decision-making perspectives studied by cognitive psychologists and researchers studying self-organization in biological systems. ► We examined the collective departure of wild desert baboons from their sleeping sites. ► The departure process was coordinated by baboons following their ‘friends’ cue to move. ► Highly social individuals were more often followed, elevating them to leadership roles.
    Subject(s): Analysis ; Animal behavior ; Animal ethology ; Biodiversity ; Biological and medical sciences ; chacma baboon ; collective behaviour ; Environmental Sciences ; Fundamental and applied biological sciences. Psychology ; grooming ; heuristics ; Life Sciences ; Mammalia ; Papio ursinus ; Peace movements ; Populations and Evolution ; Primates ; Psychology. Psychoanalysis. Psychiatry ; rule-of-thumb ; Social aspects ; Universities and colleges ; Vertebrata
    ISSN: 0003-3472
    E-ISSN: 1095-8282
    Source: Backfile Package - All of Back Files EBS [ALLOFBCKF]
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Nature communications, 2021-06-24, Vol.12 (1), p.3916-3916
    Description: AbstractIntegration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.
    ISSN: 2041-1723
    E-ISSN: 2041-1723
    Source: Nature Open Access
    Source: PubMed Central
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Functional ecology, 2015-07-01, Vol.29 (7), p.931-940
    Description: Summary Predation plays a fundamental role in evolutionary processes, driving changes in prey morphology, physiology and behaviour. With organisms being increasingly exposed to rapid environmental changes, there is growing interest in understanding individual phenotypic plasticity in response to changes in predation pressure. Behavioural and physiological responses to predator exposure are of particular interest as differences in predation pressure are often reflected in correlated suites of behavioural and hormonal profiles across populations. Within populations, the association between endocrine profiles and behaviour is less understood and often lacking. Adopting a reaction norm approach and a repeated measures design, we assessed within‐population effects of changes in perceived predation risk on endocrinology and behaviour in three‐spined sticklebacks (Gasterosteus aculeatus). We repeatedly exposed subjects to a robotic model predator and assessed their behavioural response. The fish showed consistent behavioural profiles and were less active and shyer when predation risk was higher. Using non‐invasive waterborne hormone analysis, we assessed basal cortisol as well as the cortisol response to changes in predation risk. Individuals showed significantly higher cortisol levels following exposure to the model predator. Individual post‐predator exposure cortisol was repeatable but unrelated to behavioural responses. Accounting for between versus within‐subject effects, we found that basal cortisol and shyness were positively related within individuals, that is individuals overall were shyer on days they had higher cortisol levels. We also tested if basal testosterone predicted risky behaviour and found no evidence for this hypothesis. No individual differences in hormonal or behavioural responses to changes in predation risk were found, suggesting that individuals are not constrained by their personalities in their ability to cope with a potentially harmful threat. Overall, we show that individuals of different personalities are equally ‘flexible’ in their response to changes in predation pressure. Our study offers novel insight into consistent individual differences and plasticity in hormones and behaviour as well as their interplay within populations. Future studies should assess the applicability of these findings to other changes in the environment, as well as the effects of social context on endocrine and behavioural reaction norms. Lay Summary
    Subject(s): Animal behavior ; Animal Physiological Ecology ; anti‐predator response ; coping styles ; Corticosteroids ; cortisol ; individual differences ; Predation (Biology) ; shyness ; stress ; Testosterone ; waterborne hormone analysis
    ISSN: 0269-8463
    E-ISSN: 1365-2435
    Source: JSTOR Life Sciences
    Source: Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Neuron (Cambridge, Mass.), 2011-06-23, Vol.70 (6), p.1178-1191
    Description: The auditory system must represent sounds with a wide range of statistical properties. One important property is the spectrotemporal contrast in the acoustic environment: the variation in sound pressure in each frequency band, relative to the mean pressure. We show that neurons in ferret auditory cortex rescale their gain to partially compensate for the spectrotemporal contrast of recent stimulation. When contrast is low, neurons increase their gain, becoming more sensitive to small changes in the stimulus, although the effectiveness of contrast gain control is reduced at low mean levels. Gain is primarily determined by contrast near each neuron's preferred frequency, but there is also a contribution from contrast in more distant frequency bands. Neural responses are modulated by contrast over timescales of ∼100 ms. By using contrast gain control to expand or compress the representation of its inputs, the auditory system may be seeking an efficient coding of natural sounds. ► We find evidence for spectrotemporal contrast gain control in auditory cortex ► Gain is determined by a combination of spectrally local and global contrast ► Within a limited range, mean stimulus level also affects neural gain ► Contrast gain control is fast (∼100 ms); gain decreases are faster than increases
    Subject(s): Acoustic Stimulation ; Adaptation, Physiological ; Animals ; Auditory Cortex - cytology ; Auditory Cortex - physiology ; Auditory Threshold - physiology ; Discrimination (Psychology) - physiology ; Electrophysiology ; Female ; Ferrets ; Male ; Models, Neurological ; Neurons ; Neurons - physiology ; Pitch Perception - physiology ; Sound Spectrography
    ISSN: 0896-6273
    E-ISSN: 1097-4199
    Source: Backfile Package - All of Back Files EBS [ALLOFBCKF]
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science (American Association for the Advancement of Science), 2015-07-17, Vol.349 (6245), p.309-312
    Description: Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.
    Subject(s): REPORTS
    ISSN: 0036-8075
    E-ISSN: 1095-9203
    Source: JSTOR Life Sciences
    Source: Single Journals
    Source: Academic Search Ultimate
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Nature communications, 2020-01-16, Vol.11 (1), p.324-13
    Description: Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.
    Subject(s): Adaptation, Physiological - physiology ; Animals ; Auditory Cortex - physiology ; Auditory Pathways - physiology ; Auditory Perception - physiology ; Auditory Threshold - physiology ; Cortex ; Discrimination, Psychological ; Electrophysiology ; Female ; Humans ; Male ; Mesencephalon - physiology ; Mice ; Mice, Inbred C57BL ; Midbrain ; Models, Animal ; Models, Neurological ; Neural encoding ; Neurons - physiology ; Noise ; Optogenetics ; Sound Spectrography ; Thalamus ; Thalamus - physiology
    ISSN: 2041-1723
    E-ISSN: 2041-1723
    Source: Nature Open Access
    Source: PubMed Central
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Ecology (Durham), 2018-09-01, Vol.99 (9), p.1942-1952
    Description: Despite decades of interest, few studies have provided evidence supporting theoretical expectations for coupled relationships between aboveground and belowground diversity and ecosystem functioning in non-manipulated natural ecosystems. We characterized plant species richness and density, soil bacterial, fungal and eukaryotic species richness and phylogenetic diversity (using 16S, ITS, and 18S gene sequencing), and ecosystem function (levels of soil C and N, and rates of microbial enzyme activities) along a natural gradient in plant richness and density in high-elevation, C-deficient soils to examine the coupling between above- and belowground systems. Overall, we observed a strong positive relationship between aboveground (plant richness and density) and belowground (bacteria, fungi, and non-fungal eukaryotes) richness. In addition to the correlations between plants and soil communities, C and N pools, and rates of enzyme activities increased as plant and soil communities became richer and more diverse. Our results suggest that the theoretically expected positive correlation between above- and belowground communities does exist in natural systems, but may be undetectable in late successional ecosystems due to the buildup of legacy organic matter that results in extremely complex belowground communities. In contrast, microbial communities in early successional systems, such as the system described here, are more directly dependent on contemporary inputs from plants and therefore are strongly correlated with plant diversity and density.
    Subject(s): Alpine ecosystems ; Analysis ; Articles ; bacteria ; Biodiversity ; Biological diversity ; C and N ; DNA sequencing ; Ecosystem ; Environmental aspects ; environmental gradient ; fungi ; microbial community ; Phylogeny ; Plant genetics ; Plants - classification ; Soil Microbiology ; talus
    ISSN: 0012-9658
    E-ISSN: 1939-9170
    Source: JSTOR Life Sciences
    Source: JSTOR Arts & Sciences I
    Source: Wiley Online Library All Journals
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Nature communications, 2019-07-12, Vol.10 (1), p.3075-3075
    Description: The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
    Subject(s): Acoustic Stimulation ; Animals ; Auditory Cortex - cytology ; Auditory Cortex - physiology ; Female ; Ferrets ; Learning - physiology ; Models, Animal ; Multidisciplinary Sciences ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Neuroscience ; Optogenetics ; Physiology ; Science & Technology ; Science & Technology - Other Topics ; Sound Localization - physiology
    ISSN: 2041-1723
    E-ISSN: 2041-1723
    Source: Nature Open Access
    Source: Web of Science - Science Citation Index Expanded - 2019〈img src="http://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /〉
    Source: PubMed Central
    Source: Web of Science - Social Sciences Citation Index – 2019〈img src="http://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /〉
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Nature communications, 2021-07-21, Vol.12 (1), p.4439-4439
    Description: The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.
    ISSN: 2041-1723
    E-ISSN: 2041-1723
    Source: Nature Open Access
    Source: PubMed Central
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: PloS one, 2017-10-12, Vol.12 (10), p.e0184214-e0184214
    Description: A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size), light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b*) and allometric constant (m) using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance, in particular when examining the intra- and inter-colony variability found during periods of bleaching conditions.
    Subject(s): Allometry ; Analysis ; Animal behavior ; Animals ; Anthozoa - physiology ; Approximation ; Biology and Life Sciences ; Bleaching ; Body size ; Body temperature ; Body Temperature Regulation - physiology ; Civil engineering ; Climate change ; Colonies ; Computational fluid dynamics ; Computer simulation ; Cooling rate ; Coral reefs ; Corals ; Earth Sciences ; Ecosystem ; Energy budget ; Environment ; Environmental aspects ; Environmental conditions ; Evolution ; Flow velocity ; Fluid dynamics ; Geometric constraints ; Heat ; Heating and cooling ; Hot Temperature ; Hydrodynamics ; Irradiance ; Marine ecology ; Marine sciences ; Mathematical analysis ; Mathematical morphology ; Mechanical engineering ; Metabolism ; Microenvironments ; Models, Theoretical ; Morphology ; Mortality ; Physical characteristics ; Physical Sciences ; Physiological aspects ; Physiology ; Research ; Scaling ; Stresses ; Temperature ; Temperature effects ; Temperature rise ; Temperature rise effects ; Thermal stress ; Trends ; Turbulence ; Turbulent flow ; Water flow
    ISSN: 1932-6203
    E-ISSN: 1932-6203
    Source: Academic Search Ultimate
    Source: PubMed Central
    Source: DOAJ Directory of Open Access Journals - Not for CDI Discovery
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...