placeholder
and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
Filter
Document type
Language
Year
  • 1
    Language: English
    In: Oecologia, 2007-05-01, Vol.152 (1), p.1-12
    Description: Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine cambial activity and xylem cell differentiation in conifers growing at the treeline on the eastern Alps in two sites during 2002- 2004 with the aim of linking the growth process with temperature and, consequently, of defining thresholds for xylogenesis. Cambial activity occurred from May to July-August and cell differentiation from May-June to September-October. The earliest start of radial enlargement was observed in stone pine in mid-May, while Norway spruce was the last species to begin tracheid differentiation. The duration of wood formation varied from 90 to 137 days, depending on year and site, with no difference between species. Longer durations were observed in trees on the south-facing site because of the earlier onset and later ending of cell production and differentiation. The threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regressions. Xylogenesis was active when the mean daily air temperature was 5.6-8.5°C and mean stem temperature was 7.2-9°C. The similar thresholds among all trees suggested the existence of thermal limits in wood formation that correspond with temperatures of 6-8°C that are supposed to limit growth at the treeline. Different soil temperature thresholds between sites indicated that soil temperature may not be the main factor limiting xylogenesis. This study represents the first attempt to define a threshold through comparative assessment of xylem growth and tissue temperatures in stem meristems at high altitudes.
    Subject(s): Trees ; Cell growth ; Xylem ; Tree growth ; Tracheids ; Timberlines ; Cell differentiation ; Ecophysiology ; Stems ; Growth rings ; Soil temperature ; Life Sciences ; Alps ; Tree ring ; Treeline ; Ecology ; Plant Sciences ; Cambial activity ; Fundamental and applied biological sciences. Psychology ; Biological and medical sciences ; General aspects ; Animal and plant ecology ; Animal, plant and microbial ecology ; Temperature ; Xylem - cytology ; Coniferophyta - growth & development ; Periodicity ; Xylem - growth & development ; Cell Differentiation ; Seasons ; Wood - growth & development ; Altitude ; Index Medicus
    ISSN: 0029-8549
    E-ISSN: 1432-1939
    Source: Alma/SFX Local Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of experimental botany, 2012-01-01, Vol.63 (5), p.2117-2126
    Description: Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [ (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher’s C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.
    Subject(s): Trees ; Cell growth ; Xylem ; Lignification ; Tracheids ; Cell walls ; Phenology ; Cambium ; Cellular differentiation ; Growth rings ; RESEARCH PAPER ; Fundamental and applied biological sciences. Psychology ; Biological and medical sciences ; Plant physiology and development ; Forestry ; Climate ; Picea - physiology ; Quebec ; Cambium - growth & development ; Xylem - cytology ; Models, Biological ; Picea - growth & development ; Cell Wall - metabolism ; Plant Stems - cytology ; Xylem - growth & development ; Cell Differentiation ; Cambium - cytology ; Wood - growth & development ; Picea - cytology ; Plant Stems - growth & development ; Index Medicus ; xylogenesis ; cell production ; d-sep test ; Research Papers ; cell differentiation ; secondary wall formation ; Causal modelling ; Picea mariana
    ISSN: 0022-0957
    E-ISSN: 1460-2431
    Source: Alma/SFX Local Collection
    Source: Oxford Journals 2016 Current and Archive A-Z Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Global change biology, 2020-04, Vol.26 (4), p.2072-2080
    Description: Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future. Climate change is altering phenology; however, the magnitude of this change varies among taxa. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. The increasing synchrony between plants and herbivores under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations.
    Subject(s): outbreak ; budburst ; global warming ; Choristoneura fumiferana ; boreal forest ; phenology ; Index Medicus
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Source: Alma/SFX Local Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Trees (Berlin, West), 2015-02, Vol.29 (1), p.25-34
    Description: Spring temperature is a major limiting factor at the beginning of the growing season, the timing of growth initiation can increase by about 7 days/°C. During the growing season, impacts of climate variables on radial growth are similar along an altitudinal gradient. Altitude is considered as an important factor affecting tree growth in mountain forest ecosystems. In this paper, the results of a 2-year field study along an altitudinal gradient in the cold and arid central Qilian Mountains, northwestern China, are reported. Twelve Qilian juniper trees (Sabina przewalskii Kom.) were monitored with high-resolution dendrometers at three altitudes ranging from 2,865 to 3,550 m. At each altitude, a local weather station was installed close to the studied trees. We identified correlations between intra-annual growth patterns derived from the Gompertz equation with local air temperature and precipitation data. The timing of growth initiation became earlier and the growing season duration increased with decreasing altitude. The onset of radial growth occurred between early May and early June, and the growing season terminated between mid-July and late August, resulting in a growing season duration that decreased from 107 to 41 days as elevation increased. June is the most important growth period at each altitude. Spring temperature, which is strongly associated with elevation, is a critical factor determining the initiation of radial growth. The timing of growth initiation was delayed by 3–4 days per 100 m elevation. When associated with the modeled altitudinal spring temperature lapse rate of −0.48 °C/100 m, the onset of the growing season increased by about 7 days/°C. However, during the growing season, daily stem radial increments showed a positive correlation with precipitation and a negative correlation with daily maximum air temperature at all altitudes. Our study provides new data revealing the basic growth processes of Qilian juniper trees and provides significant information to quantify the responses of tree growth to future global warming.
    Subject(s): Life Sciences ; Plant Pathology ; Plant Anatomy/Development ; Dendrometer ; Stem radial increment ; Altitudinal gradient ; Qilian Mountains ; Forestry ; Agriculture ; Plant Physiology ; Plant Sciences ; Sabina przewalskii Kom ; Weather ; Precipitation (Meteorology) ; Arid regions ; Ecosystems ; Analysis ; Mountain ecology
    ISSN: 0931-1890
    E-ISSN: 1432-2285
    Source: Alma/SFX Local Collection
    Source: ProQuest Central
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Annals of forest science., 2019-09, Vol.76 (3), p.1-18
    Description: High-resolution analysis of stem radius variation can quantify the impact of warming and drought on stem water balance and stem growth in black spruce [ Picea mariana (Mill.) B.S.P.)]. Drought affected plant water status and stem growth. However, warming affects the components of the circadian stem cycle differently if the impacts occur in the daytime or nighttime. The interactive effect of abiotic stresses had less impact on the circadian stem cycle than when the stresses occurred independently. Warming and recent droughts in boreal regions reflect the multiple dimensions of climate change. How these climate-related stresses will affect the stem growth of trees remains to be described. Plant water relations can detect the dynamics of stem depletion and replenishment under conditions of climate-forced stress.This study aimed to verify the impacts of a combination of asynchronous warming (nighttime versus daytime warming) and drought on stem water balance and stem growth in black spruce [Picea mariana (Mill.) B.S.P.)].We investigated the water status and variations in stem radius of black spruce saplings growing in a controlled environment from May through August. We grew four-year-old saplings in warmer conditions either during the day (DW) or night (NW) at temperatures ca. 6 °C warmer than the ambient air temperature (CT). We then simulated a one-month drought in June. Automatic point dendrometers provided a high-resolution analysis of variations in stem radius, and we also monitored leaf water potentials and volumetric soil water content during the entire experimental period.We detected significant reductions in stem radius variation under water deficit conditions. In the daytime warming scenario, we observed a significant increase in the duration of contraction and a decrease in expansion of the stems. The amplitude of this contraction and expansion was reduced under the nighttime warming conditions. The main effect of warming was to enhance drought stress by accelerating soil water depletion. Changes in predawn water potential drove the duration of stem circadian cycles under conditions of daytime warming, whereas irreversible growth dynamics drove these cycles under nighttime warming conditions due to the midday water potential. The interaction of night/daytime asynchronous warming and drought reduced the amplitude rather than the duration of stem contraction and expansion.Water deficit decreased stem growth during the growing season. Asymmetric warming (as a single independent treatment) affected the timing and magnitude of stem circadian cycles. Under daytime warming scenarios, the duration of contraction and expansion were regulated mainly by predawn water potential, inducing longer (shorter) durations of contraction (expansion). Under nighttime warming, the smaller amplitudes of stem contraction and expansion were associated with midday water potential. Therefore, the interaction of abiotic stresses had less of an impact on the circadian stem cycle components than when these stresses were applied independently.
    Subject(s): Life Sciences ; Environment, general ; Water status ; Wood Science & Technology ; Point dendrometer ; Water deficit ; Black spruce ; Forestry ; Forestry Management ; Saplings ; Tree Biology ; Asynchronous warming ; High resolution ; Amplitudes ; Daytime ; Night ; Moisture content ; Replenishment ; Air temperature ; Water content ; Soil water ; Nonlinear response ; Drought ; Expansion ; Trees ; Circadian rhythms ; Soil stresses ; Abiotic stress ; Water balance ; Water potential ; Environmental impact ; Nighttime ; Water relations ; Climate change ; Soils ; Depletion ; Variation
    ISSN: 1286-4560
    E-ISSN: 1297-966X
    Source: Alma/SFX Local Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Global change biology, 2011-01, Vol.17 (1), p.614-625
    Description: In the next century, the boreal ecosystems are projected to experience greater rates of warming than most other regions of the world. As the boreal forest constitutes a reservoir of trees of huge ecological importance and only partially known economic potential, any possible climate‐related change in plant growth and dynamics has to be promptly predicted and evaluated. A model for assessing xylem phenology in black spruce [Picea mariana (Mill.) B.S.P.] using daily temperatures and thermal thresholds was defined and applied to predict changes in onset, ending and duration of xylem growth under different warming scenarios with temperatures rising by up to 3 °C. This was achieved by collecting and analyzing a dataset obtained from a 7‐year monitoring of cambium phenology and wood formation on a weekly time‐scale in trees growing in four sites at different latitudes and altitudes in the Saguenay‐Lac‐Saint‐Jean region (Quebec, Canada). The onset of xylem growth occurred between mid‐May and early June while the end ranged between mid‐September and early October, resulting in a growing season of 101–141 days. The model predicted longer duration of xylem growth at higher temperatures, with an increase of 8–11 days/ °C, because of an earlier onset and later ending of growth. With an increase of 3 °C in the mean temperature during the year, the duration of xylem growth changed on average from 125 to 160 days. The predicted changes in cambial phenology could significantly affect future wood production of the boreal ecosystems.
    Subject(s): xylogenesis ; microcoring ; cell differentiation ; cambium ; Picea mariana ; boreal forest ; Fundamental and applied biological sciences. Psychology ; General aspects ; Animal, plant and microbial ecology ; Exact sciences and technology ; Earth, ocean, space ; External geophysics ; Biological and medical sciences ; Climatology. Bioclimatology. Climate change ; Animal and plant ecology ; Meteorology ; Ecosystems ; Climate ; Analysis
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Source: Alma/SFX Local Collection
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Journal of experimental botany, 2012-01-01, Vol.63 (2), p.837-845
    Description: The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not heightdependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids ( ² =0.68, 〈 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
    Subject(s): Trees ; Xylem ; Lignification ; Tracheids ; Cell walls ; Hydraulics ; Stem cells ; Auxins ; Plants ; Cellular differentiation ; RESEARCH PAPER ; Fundamental and applied biological sciences. Psychology ; Biological and medical sciences ; Plant physiology and development ; Forestry ; Temperature ; Indoleacetic Acids - metabolism ; Xylem - anatomy & histology ; Trees - growth & development ; Trees - anatomy & histology ; Cambium - growth & development ; Lignin - metabolism ; Plant Stems - anatomy & histology ; Wood - anatomy & histology ; Time Factors ; Cambium - anatomy & histology ; Picea - anatomy & histology ; Picea - growth & development ; Cell Wall - metabolism ; Xylem - growth & development ; Italy ; Cell Differentiation ; Wood - growth & development ; Plant Stems - growth & development ; Index Medicus ; Picea abies polar pattern growth ; Research Papers ; cell differentiation ; Auxin ; cambium ; conduit tapering
    ISSN: 0022-0957
    E-ISSN: 1460-2431
    Source: Alma/SFX Local Collection
    Source: Oxford Journals 2016 Current and Archive A-Z Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Applications in plant sciences, 2014-10, Vol.2 (10), p.1400054-n/a
    Description: • Premise of the study: A network of mountain observing stations has been installed in the Great Basin of North America. NevCAN (Nevada Climate‐ecohydrological Assessment Network), which spans a latitudinal range of 2.5° and two elevation ranges of about 2000 m each, enabled us to investigate tree growth in relation to climate. • Methods: We analyzed wood anatomy and tree‐ring characteristics of four conifer species in response to different levels of water availability by comparing a low‐ and a high‐elevation population. Chronologies of earlywood and latewood widths, as well as cellular parameters, were developed from the year 2000 to 2012. • Results: At the southern (drier and warmer) sites, Pinus monophylla had smaller cell lumen, tracheid diameter, and cell wall thickness. Pinus monophylla and P. flexilis showed bigger cellular elements at the higher elevations, whereas the opposite pattern was found in Picea engelmannii and Pinus longaeva. When all species and sites were pooled together, stem diameter was positively related with earlywood anatomical parameters. • Discussion: We have provided a glimpse of the applications that NevCAN, as a new scientific tool, could allow in the general field of botany. In particular, we were able to investigate how differences in water stress related to elevation lead to changes in xylem anatomy.
    Subject(s): tracheid size ; Pinus flexilis ; elevation‐latitude gradients ; Pinus longaeva ; Picea engelmannii ; Pinus monophylla ; NevCAN ; Automation ; Xylem ; Cell walls ; Ecosystems ; Time series ; Conifers ; Research ; Water availability ; Anatomy ; Water stress ; Environmental conditions ; Studies ; Climate change ; Precipitation ; Observatories ; Archives & records ; Physiology ; elevation-latitude gradients
    ISSN: 2168-0450
    E-ISSN: 2168-0450
    Source: BioOne Open Access Titles
    Source: PubMed Central
    Source: Directory of Open Access Journals
    Source: ProQuest Central
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Annals of botany, 2014-08-01, Vol.114 (2), p.335-345
    Description: • Background and Aims Wood formation in trees represents a carbon sink that can be modified in the case of stress. The way carbon metabolism constrains growth during stress periods (high temperature and water deficit) is now under debate. In this study, the amounts of non-structural carbohydrates (NSCs) for xylogenesis in black spruce, Picea mariana, saplings were assessed under high temperature and drought in order to determine the role of sugar mobilization for osmotic purposes and its consequences for secondary growth. • Methods Four-year-old saplings of black spruce in a greenhouse were subjected to different thermal conditions with respect to the outside air temperature (T0) in 2010 (2 and 5 °C higher than T0) and 2011 (6 °C warmer than T0 during the day or night) with a dry period of about 1 month in June of each year. Wood formation together with starch, NSCs and leaf parameters (water potential and photosynthesis) were monitored from May to September. • Key Results With the exception of raffinose, the amounts of soluble sugars were not modified in the cambium even if gas exchange and photosynthesis were greatly reduced during drought. Raffinose increased more than pinitol under a pre-dawn water potential of less than -1 Mpa, presumably because this compound is better suited than polyol for replacing water and capturing free radicals, and its degradation into simple sugar is easier. Warming decreased the starch storage in the xylem as well the available hexose pool in the cambium and the xylem, probably because of an increase in respiration. • Conclusions Radial stem growth was reduced during drought due to the mobilization of NSCs for osmotic purposes and due to the lack of cell turgor. Thus plant water status during wood formation can influence the NSCs available for growth in the cambium and xylem.
    Subject(s): Xylem ; Deficit irrigation ; Plant growth ; Solubility ; Starches ; Saplings ; Cambium ; Drought ; Vascular plants ; Sugars ; Water ; Carbon - metabolism ; Temperature ; Xylem - physiology ; Gases - metabolism ; Quebec ; Wood - metabolism ; Global Warming ; Xylem - cytology ; Droughts ; Picea - growth & development ; Statistics, Nonparametric ; Carbohydrates - analysis ; Seasons ; Photosynthesis ; Picea - metabolism ; Wood - growth & development ; Cambium - physiology ; Plant Leaves - physiology ; Index Medicus ; xylogenesis ; non-structural carbohydrate ; soluble sugars ; black spruce ; global warming ; wood formation ; drought ; starch ; Original ; Picea mariana ; raffinose ; climate change
    ISSN: 0305-7364
    E-ISSN: 1095-8290
    Source: Academic Search Ultimate
    Source: PubMed Central
    Source: Alma/SFX Local Collection
    Source: Oxford Journals 2016 Current and Archive A-Z Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Annals of botany, 2012-11-01, Vol.110 (6), p.1099-1108
    Description: • Background and Aims Reconstructions have identified the 20th century as being uniquely warm in the last 1000 years. Changes in the phenology of primary meristems converged toward increases in length of the growing season. Has the phenology of secondary meristem changed during the last century, and to what extent? • Methods Timings of wood formation in black spruce, Picea mañana, were monitored for 9 years on a weekly timescale at four sites in the boreal forest of Quebec, Canada. Models for assessing xylem phenology were defined and applied to reconstruct onset, ending and duration of xylogenesis between 1950 and 2010 using thermal thresholds on chronologies of maximum and minimum temperatures. • Key Results All sites exhibited increasing trends of both annual and May-September temperatures, with the greatest changes observed at the higher latitudes. Phenological events in spring were more affected than those occurring in autumn, with cambial resumptions occurring 0·5-0·8 d decade⁻¹ earlier. The duration of xylogenesis has lengthened significantly since 1950, although the models supplied wide ranges of variations, between 0·07 and 1·5 d decade⁻¹, respectively. • Conclusions The estimated changes in past cambial phenology demonstrated the marked effects of the recent increase in temperature on the phenological traits of secondary meristems. In the long run, the advancement of cambial activity could modify the short time window for growth of boreal species and dramatically affect the dynamics and productivity of trees in these temperature-limited ecosystems.
    Subject(s): Trees ; Climate change ; Meristems ; Xylem ; Tracheids ; Phenology ; Boreal forests ; Climate models ; Cambium ; Modeling ; Meristem - cytology ; Climate ; Temperature ; Quebec ; Air ; Meristem - growth & development ; Cambium - growth & development ; Xylem - cytology ; Time Factors ; Models, Biological ; Picea - growth & development ; Xylem - growth & development ; Cell Differentiation ; Seasons ; Cambium - cytology ; Wood - growth & development ; Picea - cytology ; Index Medicus ; xylogenesis ; cell differentiation ; wood formation ; boreal forest ; Original ; Picea mariana ; threshold temperature
    ISSN: 0305-7364
    E-ISSN: 1095-8290
    Source: Academic Search Ultimate
    Source: PubMed Central
    Source: Alma/SFX Local Collection
    Source: Oxford Journals 2016 Current and Archive A-Z Collection
    Source: © ProQuest LLC All rights reserved〈img src="https://exlibris-pub.s3.amazonaws.com/PQ_Logo.jpg" style="vertical-align:middle;margin-left:7px"〉
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...